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Thermal noise and the stability of single sonoluminescing bubbles
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The stability of a bubble levitated in an acoustic field under single bubble sonoluminescence conditions was
numerically investigated taking thermal noise effects into consideration. Due to the microscopic size of a
sonoluminescing bubble thermal noise is important to its surface and is found to cause small irregularities in its
spherical shape. A stochastic differential equation in Langevin form is derived to describe the dynamics of a
perturbation from the spherical and solved together with the Rayleigh-Plesset equation. The mechanisms
responsible for the amplification of small irregularities are examined and a stability threshold is derived, which
is in good agreement with experimental threshold data of Holt and Gaitan.

PACS numbsds): 78.60.Mq, 47.20.Ma

[. INTRODUCTION simplifications which have important influence on the result
[5,6] or map out a stability threshold for driving pressures
The emission of light by gas bubbles in a liquid excitedwhich lie well below those applied in SBSL experiments
by ultrasound was first reported in 1933 by Marinesco and7,8]. The subject of this paper is to improve the stability
Trillat [1]. The phenomenon known as sonoluminescenc@nalysis by adding corrections to existing models and focus
(SL), was thought to be associated with the transient collapsen the stability behavior of bubbles within the-R, param-
of cavitating bubbles. In 1989 Gaitaat al. [2] discovered eter region.

the conditions under which a single bublf#B) can be sta- Distortions from the spherical may be described by super-
bly levitated in a standing sound wave and emit light inimposing surface spherical harmoni3 on the mean radius
every cycle of the sound field. R(t) such that

In SBSL the bubble undergoes strong nonlinear oscilla-
tions with every cycle of the sound field. The slow expansion
and stretching of the bubble surface during the rarefaction
phase is followed by a high velocity and almost adiabatic
collapse of the bubble to a minimum radius which is deter-
mined by the high pressure of the bubble’s contents. At this
point the contraction reverses and the bubble wall acceleraté¥hereay' is the distortion amplitude. The superscriptde-
outward. After the collapse the bubble oscillates around it§10tes the degree of the spherical harmonics, while its sub-
ambient radius with diminishing amplitude until the next rar- Script n indicates its mode. Since spherical harmonics are
efaction phase of the driving sound. For a fixed equilibriumdefined by means of Legendre polynomial4(6,¢)
radiusR, the bubble will during these oscillations, if they are = P'(#)cosfne), it is clear that the wavelength of the shape
small, exhibit its fundamental resonance frequeagybut deformation decreases with increasing mode. For the same
large oscillations will have a slightly different frequency be- amplitude a]', a short wavelength deformation causes a
cause of the nonlinearity of the bubble dynamics. greater increase in the bubble’s surface area than a long

Observations of unstable bubbles show that they retaiwavelength deformation. Because surface tension inhibits in-
their spherical symmetry during the expansion phase, butreases in surface area highshort wavelength deforma-
become unstable after the collagsg. Experiments by Holt tions tend to develop smaller amplitudes than smadefor-
and Gaitan[4] showed that the stable SBSL regime is de-mations.
fined by the radius of the bubble at ambient pres®yand The magnitude of each mode of the shape distortion
the amplitudeP, of the driving acoustic pressurBq(t)  depends on the dynamics of its amplituaf®. A small am-
=P, coswd, where wy/27 is the frequency of the driving plitude approximation, where it is assumed thaf/R|<1
sound. As the amplitud®, of the driving pressure is in-  allows us to describe the dynamics of the distortion ampli-
creased distortions in the bubble’s surface lead to its disrupyde by a linearized differential equation. In this linear ap-
tion [4]. ) . o proximation thea;"s are uncoupled and their dynamics can

A theoretical analysis of the bupble’; stability will enable pq approximated by an equation which is independent of the
us to make a statement about regions infQeR, parameter  gegreem of the spherical harmoni®—11. After simplifica-
plane at which stable SBSL experiments will be possibletions (see next section for detalilthe equation describing the
Recent studies on the stability problem are either based Oflynamics of the distortion has the form of a damped linear

harmonic oscillator

o0 n

Rasored D =R(D+ 2 2, an(OYR(6,0), (1D
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The majority of previous numerical studigk2,13 on the  violent collapse, where the compressed gas has a density
stability problem are based on analyzing whether initial in-comparable to that of the surrounding liquid. In this analysis
terface distortions of small amplitude grow or diminish with we therefore consider the dynamics of the gas inside the
time, where it is assumed that the spherical surface of thbubble, but, to keep the problem tractable, ignore its viscos-
bubble is displaced from equilibrium and released at ttime ity as in previous simulations.
=0. However, during a sound cycle the stability of a bubble If, as in Refs.[16,6], it is assumed that vorticity spreads
surface is not only affected by its nonlinear motion whichout only into a small liquid boundary layer of sizearound
may amplify initial perturbations from the spherical, but alsothe bubble and one neglects only the viscosity of the gas, the
exposed to the continual motion of molecules in the surequation of motion as derived by Prosperéftl] can be
rounding gas and liquid. Molecular fluctuations are more im-simplified to Eq.(1.2), where expressioné(t) and B(t)
portant for bubbles on the microscopic scale typical forhave the form
SBSL bubbles.

The present stability investigation was stimulated by the 3R 7 n?(n+2)?
work of Brenneret al.[5] and Hilgenfeldtet al.[6] who first B(t)= R + Zﬁ( - 1+28/R |’ 2.7
considered the effects of thermal fluctuation in their analysis,
but adds a significant correction to the physical model. Mo- R B
lecular fluctuations within the bubble and the surrounding AN =[(n+1)(n+2)p,—n(n—1)p]—= + Liadl
liquid act as a random force on the bubble surface. There- g (R (R®
fore, this investigation will improve upon earlier models by )
introducing a random force to the dynamics of the distortion N 2m R n?(n— 1)(n+2)) 22
amplitude rather than a random displacement. Prosperetti . RS 1+268/R ' '

and Hao[7] extended the stability model by introducing a

nonzero right-hand side in the stability equati@in?), but ~ where B=n(n—1)(n+1)(n+2) and {=np,+pg(n+1).

did not give a definite expression. The present analysis clarir R R denote the radius, velocity, and acceleration of the
fies the remaining problem of the expression on the nonzerg,pple wall,p,, o, and », refer to the density, surface ten-
right-hand side of Eq(1.2). Using the equipartition theorem gjon ang viscosity of the surrounding liquid, apglis the
and the theory of Langevin equations, we derive the correCfiensity of the gas inside the bubble.

form of this expression and examine its consequences for a Prosperetti and Hafil6], Brenneret al. [5], and Hilgen-
bubble in the SL parameter region. In this paper we also treggy; et al. [6] approximate the boundary layer thicknessy

the flow of heat into and out of the bubble, improving on thethe diffusive length scale/ﬁ- wherev,= 7, /p, is the kine-
adiabatic or isothermal approximations used by other authorﬁ]atic viscosity of the liquid ,As a time scale they choese

[5.6.14. =1/wg, Where wg/(27) is the frequency of the driving
sound field. To prevent the boundary layer around a small
Il. DYNAMICS OF THE DISTORTION AMPLITUDE _bubble from gro_wing Iarg_er than the radius of the bubble
itself we determine the width of the boundary layer by the

The equation of motion for distortions of amplituds,, cutoff criteria introduced by Brennest al. [5] and Hilgen-

for a stationary bubble in a viscous fluid was first derived byfeldt et al. [6] according to which

Prosperett{11]. Due to the problem of distribution of vor-

ticity which is determined by the prior motion of the free — \/7| R(t)

surface, this equation has integrodifferential structure and its o=min ws 2n |’ 23

numerical solution is a difficult task. Several ways of simpli-

fication have since been applied: the complexity of Prosper-

etti's equation can be significantly reduced if it is assumed

that vorticity has no time to spread into the liquid so that its Molecular fluctuations in the surroundings of the bubble

effects can be ignored. This is the most common approximawall act as a random force on the bubble surface. To model

tion to the stability problem and frequently applied when thethe effect of this random force on the dynamics of the dis-

surface stability of a gas bubble in liquid is discussedtortion, the ordinary differential equatiofi.2) which deter-

[3,11,15. mines its dynamics has to be rewritten in the form of a sto-
In order to simplify the problem with a higher degree of chastic differential equation

accuracy Prosperefti6], Hilgenfeldtet al. [6], and Brenner ) .

et al. [5] applied a boundary-layer approximation to the a,(t)+B(t)ay(t) +A(t)a,(t)=C(t)f(1), (3.

problem, where it is assumed that vorticity spreads only into

a small boundary layer around the bubble. Hilgenfeidal. ~ Wheref(t) denotes the temporally uncorrelated random force

[6] and Brenneret al. [5] in their approach additionally simulated as white Gaussian noise with unit variance. We

modified the original derived equation of the boundary-layerfirst consider the case whef(t)=A, B(t)=B, and C(t)

approximation by means of a Taylor expansion, which leads=C are constants independenttolUsing standard methods

to a damping term very much smaller than in the original[17] it can be shown that the root mean square amplityge

Ill. ADDING A THERMAL NOISE TERM

approximation. of the deformation is given by
All authors[3,5-7,11,15,1ptreat the problem assuming AR
that the viscosity and density of the gas are negligible. How- \/@: . (3.2

ever, density effects may become important at the end of a
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The equipartition theoreril8] also implies(see the Appen- 20 4.
dix) that at equilibrium Pp=Pg— R ?R' (4.2
KT 1/2
\/<anz>=(2—0 , (3.3 R,R,R denote the bubble radius, the velocity of the bubble
o(n“+n+2) wall, and its accelerationy,,7, and o refer to density,

viscosity, and surface tension of the surrounding liquid, re-
spectively andt; denotes the speed of sound in the liquid. To
describe the pressure of the gRg inside the bubble we

with k representing the Boltzmann constant dndhe equi-
librium temperature. We therefore set

SKT.AB | M2 apply the van der Waals equation of state. Neglecting attrac-
B b (3.4) tive forces between the molecules has no effect on the phys-
a(n’+n+2) ics discussed here, and we can use the van der Waals equa-

tion in the simplified form

effectively choosing the amplitude of the fluctuations to sat-

isfy the equipartition theorem. We now make the assumption NRT,(1)
that the timescale for molecular fluctuations is much shorter Py(D)= N OEK
than that of the bubble motion. This is clearly true, because a
bubble with surface area 18 m? experiences on the order ) ] )
of 10?* molecular collisions per second from a gas at atmoWhereis the number of moles present in the bubbeis
spheric pressure. Thus, we can assumeEd) will give the ~ the universal gas constari, is the bubble’s internal tem-
correct amplitude for thermal noise even when A and B dePeratureV is the volume of the bubble, arimis the excluded

pend on time. This formula is therefore used in our numerivan der Waals hard core volume. .
cal simulations. An equation to determine the temperature dynamics of the

fects in SL[19] the temperature at the bubble wall is most of Modynamics,

the cycle close to the ambient liquid temperature, due to the

formation of a cold, dense layer of air at the bubble wall du(t) dQ(t) _dwv(t)

during its contraction. As the bubble hits its minimum radius dt  dt P dt (4.4
the temperature is predicted to change for only a few nano-

seconds. According to the fluctuation dissipation theorem o )
[20] the time required for thermal noise to affect the dynam—WheerU denotes the change in internal energy of the sys

. T tem, dQ is the heat added to the system aRdlV is the
ics of a system corresponds to the damping time of the sygs . qone on the system

tem. The damping time for bubble shape oscillations is of the For a perfect gas the internal energy can be expressed in

°fd9f qf microseconds. It is thus reasonable to apply th‘f"erms of the molar specific heat of the gas at constant vol-
equilibrium formula to SL bubbles. In water at room tem- ume,Cy, and change in temperatuT, so that
Vo )

perature and in equilibrium the amplitude of surface defor-

mations caused by thermal noise will have an amplitude of

about 80 pm for smalh. du() _ dT(t)
From Eq.(3.9 it is evident that the size of the deforma- dt Vodt

tion due to noise effects decreases with increasing mazfe

the deformation. In addition, keeping the expression ofin the case of a gas bubble the heat absorbed by the gas is

spherical harmonics in terms of Legendre polynomials ingiven by

mind, the forcing required to excite modes increases with the

mode number. We will discuss therefore in the following dQ(t)

only the low distortion-mode components. T =NCy

4.3

(4.5

TO_Tg(t) (4 6)

IV. RADIAL MOTION . . . . .
wherer is the thermal diffusion time and, is the tempera-

To describe the bubble’'s motion in the sound field weture of the surrounding fluid.
refer to the Keller-Miksis model accounting to first order for ~ Substituting Eqs(4.5 and (4.6) into Eq. (4.4) we find
the liquid compressibilityf21], given by that the temperature of the gas inside the bubble varies with
the bubble’s volumeé/(t) as

1 R BRES( 1 i R?
o/"RraltTag dTy(t)  To—Tg()  Py(t) dV(D) 7
dt T NC, dt '
1 R R d
=|—*+t— (Pb_Pw)+_d_(Pb_POO)!
P PG pic dt where P, is the pressure inside the bubble. We set
(4.1  =R(t)?/(m?Dgy), which is the relaxation time for exponen-

tial decay of the first Fourier mode in the spherically sym-
wherePy, is the pressure on the liquid side of the bubble wallmetric solution of the heat diffusion equatidd, denotes the
given by thermal diffusivity of the gas, given by
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30 ' ' where T, is the bubbles internal temperatufd, denotes
— a) Avogadro’s constant, anghy, Ay, o4, andvy are the mass,
g20- the mean free path, the collision cross section, and the mean
2 speed of a gas molecule, respectively.
8101 ‘ ] A solution to the Keller-Miksis equation of motion to-
\m{\/\a gether with the van der Waals equation of state coupled with
% 0 20 30 20 the above equation for the temperature dynamics inside the
time (us) bubble is shown in Fig. 1. Figurgd) is a plot of a bubble’s
1000 , , radial dynamics versus time for a bubble with an equilibrium
b) radiusRy=4 wm in a sound field with a pressure amplitude
800r 1 P,=1.2 bar. Figure () is a plot of the corresponding tem-
< sool ] perature inside the bubble versus time. The maximum tem-
= perature at the bubble’s minimum radius is about 17 000 K.
40(’%% ‘ MW Introducing the heat conduction to the model improves the
200¢ . ‘ ‘ - 1 agreement with experimental data when compared to an iso-
0 10 2oﬁme( " 30 40 thermal or adiabatic model. The importance of the energy
w

loss due to heat flow for the stability dynamics has already

FIG. 1. (a) Radius versus time over one cycle in a sound fieldo€en pointed out by Prosperetti and Had who found that
with a pressure amplitude d?,=1.2 bar and a radial frequency When including a thermal damping term the deformation is
wyg=2mx20.6 kHz. The bubble has an equilibrium radiusRyf  significantly weakened. A comparison between the thermal
=4 um. (b) Corresponding temperature dynamics inside thedamping predicted by the approximation introduced here and
bubble as a function of time. The maximum temperature occurs ahe model of Chapman and Ples§28] shows close agree-
the bubble’s minimum radiuRk,,;;=34.8 us and reaches about ment.
17000 K. The maximum temperatures are not displayed to make Recent experiments by Matula and Cr{i24] and Ketter-
information at smaller temperatures visible in more detail. ling and Apfel[25] confirm a hypothesis by Lohs al.[26]
according to which chemical reactions inside the bubble will
transform an air bubble to a pure argon bubble. Therefore, all
parameters are chosen to represent an argon bubble in water
and may be used to interpret air bubble experiments. Con-
with Cp denoting the molar specific heat at constant presstants used in the simulation are given in Table I.
sure. The coefficient of thermal conductivigy, is given by Due to its stochastic character we need to apply a stochas-
[22] tic generalization of standard numerical methods to solve Eq.
1 2Cy | KT. |12 (3.1. Thus, we will solve Eq(3.1) together with the Keller-
Kg=§)\gngV(N/V)= - v (_9) , (4.9 Miksis Eq (4.1 and Eq.(4.7) using the standard form of
agNa | mMyg Langevin’'s formulg27].

KgV

Dgzm, (4.8

TABLE I. Constants used in the numerical simulation.

Sound
Frequency w427 20.6 kHz
Speed in water c 1481 ms?
water
Ambient pressure Py 1 bar
Ambient temperature To 293.16 K
Viscosity 7 103 kgm?! st
Density oI 10° kgm 2
Surface tension o 0.073 Nt
argon
Hard core v. d. Waals radius h R,/8.86 m
No. of moles per unit volume Ng 44.67 m 3
Molar heat capacity, const. volume Cy 125 JK?
Molar heat capacity, const. pressure Cp 20.8 JK?
Mass per mole Mg 39.9x10°3 kg
Mass per atom mgy 6.68x 10 2° kg
Collision cross section oy 36x10%° m?

Viscosity g 21x10°8 kgm'?! st
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1* 107 3x10'3
200 05 -
& Ve
g" E 150 « 2 v FIG. 2. (3)—(d) The bubble’s radius, velocity,
g ia d S1s L acceleration, and gas density respectively, are
a) 100 g 7~ plotted as a function of time during the final
8—%3 5 o2 2 5 o2 05 o2 5 o2 stages of collapse and the turnarouRgi= 4 pm,
t (ns) 10 t (ns) t (ns) P,=1.4 bar.(e) and(f) show the corresponding
500 2 05 dynamics of the dimensionless expressi@&(s)
o o o o anq A(t) ip Eq. (.3.1). Both are shoyvn ip com-
2 E o0 parison with their dynamicédotted ling in the
g S0 ®2 g case where the density of the gas is neglected.
& -1000 ) =05 While for the damping ternB(t) (e) the differ-
1500 b) 4 ence between the solutions is negligible, strong
02 0 0.2 02 0 0.2 02 0 0.2 compression may reverse the sign of the term
ox10® 1 xt0 ) 0z t o) A(t) (f). An example of a typical{=2) mode
s ok T~ | ol deformation(normalized is plotted in(g). If den-
[ \\\ s . oz ~ T sity is ignored the deformation after the collapse
«g 4 < 5 \\ // <§-0'4 \\ // is considerably stronge(dc_)tted ling. (h) and (i)
& 20 & N ' \\ / show the magnitudeB(t)a,(t) and A(t)ay(t),
" a0t N 081 -7 respectively.
-0.2 0 0.2 -0.2 0 0.2 08 -0.2 0 0.2
t (ns) t (ns) t {ns)
V. RESULTS AND DISCUSSION model the gas was assumed to behave isothermally its stiff-

ness would be greatly underestimated leading to a compara-

The solution of Eq(3.1) can be used to describe a num- .
tively low resonance frequen¢®2]. As a consequence reso-

ber of different instability characteristics, which act not only ) ) I
on different time scales but also in differéPt-R, parameter nhance coupllng' between .r.adlgl and modal oscillations,
regions. We will distinguish between two types of instability 2ding to a maximum amplification of surface waves, would

mechanisms responsible for the amplification of small perCCur at larger equilibrium radii. Also important are the
turbations during one cycle. damping mechanics of the bubble motion since the bubble’s

The well-known Rayleigh-Taylof28] instability acts as résonance frequenay, will reduce with damping. Addition-
the bubble wall is strongly accelerated outwatftem the ally, as mentioned above, the amplification of surface waves
gas into the liquitt The mechanism acts suddenly and on aywll be significantly _stronger than in the undamped model. It
nanosecond time scale. Although the Rayleigh-Taylor instalS therefore essential to determine the thermal dynamics of
bility amplifies small perturbations caused by molecular fluc-the system, a fact ignored in earlier studiésl4].
tuation during one cycle, the mechanism is not strong ‘W& now consider the effect of the gas dengityon the

enough to lead to the bubble’s disruption in the paramete?tabi_"ty problem. During the collapse of a bubble, but before
region relevant to SL. the final moments of very high compression, the first term

The problem of an amplification of deformation caused by3R/R in Eq. (2.1) is large and negative. The introduction of
the bubble’s volume oscillations after the collapse goes backy reduces the size of the second term, but this effect is
to Faraday[29]. He discovered that a free surface of liquid unimportant because the first term is dominant. A negative
when oscillating periodically and normal to its surface will value of B(t) leads to instability, and this instability is
induce wavegFaraday waveson its surface of half the fre- almost unaffected by the gas density. This is illustrated in
guency of the oscillation. Longuet-Higgih30] showed that  Fig. 2(e).
this also applies to spherical surfaces. For any surface mode While the damping is not significantly altered during
n, strong Faraday instability will occur asw?/wy, ap-  strong collapse, including the gas density has important ef-
proaches unity and resonance coupling between surface affects on the coefficienA(t) in Eq. (2.2). When the bubble
volume oscillations occurs. In contrast to Prosperetti andadius is close to its minimum, the velocity of the bubble
Hao [7], who assigned the development of Faraday wavesvall is small and the acceleration of the gas towards the
only to the build-up of instabilities over more than one cycle,liquid is very large. In classical stability models, where gas
we find that maximal deformation due to the Faraday mechadensity is neglected, strong Rayleigh-Taylor instability will
nism will develop within microseconds and occurs more tharoccur. This is represented in E(B.1) by a large negative
three bounces after the collapse. value of the coefficienA(t). When gas density is included

Surface waves due to Faraday instability may be resporthis Rayleigh-Taylor effect is weakened, as can be seen from
sible for the increase in the signal reflected from the bubbld=q. (2.2). For very strong compression, as in the case of
surface a few radial oscillations after the collapse as obsmall bubbles in strong sound fields(t) may even become
served in light-scattering experiments by Matula and Crunpositive and cause the amplitude of deformations to decrease
[31]. (see Fig. 2 This, however, is only true at the end of a

From the characteristics of the Faraday instability it isviolent collapse with strong compression. During the subse-
clear that the resonance frequenoy of the bubble is of quent afterbounces Rayleigh-Taylor instability will occur
vital importance to the stability dynamics. If in the physical and additionally increase perturbations amplified during a
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FIG. 3. (a) Radius versus time during the final stages of collapse
and the radial bounces following the collaps®,=2 pwm, P,
=1.4 bar.(b) Typical correspondingn(=2) mode deformation.
After a strong amplification at~38.7 us due to a violent bubble
collapse, perturbations get additionally amplified due to Rayleig
Taylor instability from secondary minima occurring with further
bounces.

FIG. 4. (a) The bubble radius as a function of time during col-
lapse until the next sound cyclRg=4 um,P,=1.4 bar. Belowb)
the corresponding amplitude oh€2) mode deformation, which
hreaches a maximum seven radial bounces after the bubble reached
its first minimum att~39.9 us.

) . ~coupling between surface modes is becoming important,
violent collapse. We will therefore refer to the deformationyhich is beyond the scope of this analysis.

over the first 2-3 bounces after the collapse as Rayleigh- Both, the Rayleigh-Taylor and Faraday instability amplify
Taylor instability. small perturbation caused by molecular fluctuation but only
According to Prosperetti and H4@] the development of  the latter is strong enough to amplify surface waves which
surface deformations during the radial bounces after the colead to the bubble’s disruption in a single cycle. As an esti-
lapse is directly related to the Rayleigh-Taylor effect. How-mate we assume the possible break up of a bubble if in one
ever, we find that the mechanisms can be separated and actdften cycles the size of the deformation reaches the size of
different parameter regimes. The Rayleigh-Taylor instabilitythe radiusja,/R|=1 as in previous simulatiof&—7].
is more pronounced for small bubbles which undergo a |f strong surface waves develop during the after bounces
stronger collapse, while the Faraday instability on the othegnd restoring forces are weak, distortions may not be entirely
hand is responsible for the deformation of larger bubbles andiretched out during the next expansion phase. As a conse-
may lead to their disruption during one cycle. In particularquence the deformation developed in the first cycle will ex-
the bubble shown in Fig. 4 has a maximal deformationperience a second and subsequent amplification in the fol-
maxa,|=16 nm over the first three bouncestas44.5 us,  |owing cycles. A third instability mechanism, referred to as
while the smaller bubble in Fig. 3 in an equally strong soundparametric instability is responsible for the build-up of shape
field develops a comparably larger deformation during itsinstabilities over more than one cycle. A bubble is assumed
first three bOUnceS, but no additional amplification 0CCUr§p pe parametrica”y unstable if for every one of ten solu-
and the perturbation will be quickly damped out. Only thetions, each obtained with a different string of random num-
larger bubble shown in Fig. 4 is Faraday unstable. bers to simulate thermal noise, the instability grows from
Figure 5 shows the mean maximum normalized perturbacycle to cycle. For each cycle we used the same string of
tion developed during one cycle within tiRg-R, parameter random numbers.
plane. The mean was derived from ten different solutions, As shown in F|g 6 for |arger bubbles at driving pressures
each obtained using a different stringf random numbers, pelow SL amplitudes the parametric instability sets in before
so that (maxa,/R|)= 152 maxa,/R}. In Fig. 5a) the the bubble’s disruption during a single cycle. At near-SL
maximum deformation due to Rayleigh-Taylor instability acoustic pressuresabout 1.2-1.5 b3y a parametrically
only is shown. While large bubbles are stable over the firsstable bubble may get disrupted during one single cycle. An
2-3 bounces after the collapse throughout the range of drivimportant difference between these two types of instability,
ing pressures, small bubbles can become Rayleigh-Taylovhich both may lead to the bubble’s disruption, is the speed
unstable at higher driving pressures. with which the deformation and subsequent disruption oc-
The Faraday instability is shown in Fig(t5. After a  curs. While the deformation during one cycle within
peak, which indicates the equilibrium radius at which resothe SL parameter range (Lm=<Ry,<7 um, 1.2 baxP,
nance coupling between the volume and surface oscillations1.4 bar) never exceeds about 150 m/s, deformation which
occurs, the maximum deformation due to Faraday waves wilbuilds up over several cycles may reach enormous speed
cease. This however, does not imply that the bubble wil(>10° m/s). One may expect a bubble which disrupts
retain its spherical symmetry for higher radii. Higher modes“slowly” into a mass of microbubbles to reform at the an-
are excited at higher equilibrium bubble radii. Additionally, tinode since the mass of bubbles is not scattered far apart. As
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FIG. 6. The numerical derived thresholds for which a bubble is
0 found to be 6=2) mode parametric instable—), (n=3) mode
parametric unstable- —), and may disrupt by two-mode deforma-
tion during a single cycle (- -) is plotted within the equilibrium
radius,R,, and the sound pressure amplitug, parameter plane.
Stability threshold data from experiments by Holt and Gaitan are
indicated by crosses for instable bubbles where the mode was not
identified, by circles for 2-mode instable bubbles, and by triangles
for 3-mode instable bubbles.

<max | a2/R I>

larger modes to become important only for bubbles larger

than in the SBSL regime, it is reasonable to compare these
data points to numerical instability thresholds for small mode

deformations.

The numerical results show that for bubbles with an equi-
librium radiusR, larger than about 1Qum the (h=3) mode
distortion will become parametrical unstalideforethe (n
_ _ =2) mode parametric instability sets in. This is in close

FIG. 5. (a) The mean maximum of the normalized=2) de-  agreement with experiments where for bubbles WRj
formation during the first three radial bounces after collapse, where. 13 um only the 1=3) mode was observed, while the
_Rayleigh-Taonr oceurs. The mean is plotted as a_functior_1 of driv—(n: 2) mode perturbation dominates for smaller bubbles.
ing pressure amplitud®, and the bubbles equilibrium radid,. The experimentally obtainedn&2) mode instability
(b) The mean maximum amplitude of normalized surface Wavesh eshold indicates a trend for bubbles wity>11 um
during the bubblles radial bounce, from the third radial bounce afte\rNhiCh deviates from the numerical predicted onset of (
the collapse until the next expansion phase. L - .

=2) mode parametric instability, but instead corresponds

a result they may merge at the driving pressure antinode d¥ell with the onset (=3) mode parametric threshold. This
the sound field as they expand during the next rarefactioffiscrepancy hints that coupling between the distortion modes
phase. This may explain the appearance of bubbles whicfiay occur and the onset ofi € 3) instability stimulates the
repeatedly grow, shape oscillate, and break up in the soungmaller perturbation mode. o i
field. What is termed “recycling” bubbles was observed by  For SBSL bubbles, which have smaller equilibrium radii,
Holt and Gaitar{4] at driving pressures between 0.8 and 1.4Ro<7 um, the (1=2) mode distortion must dominate the
bar. In the case of parametric unstable bubbles on the oth&ubble’s surface oscillations. Our numerical solution shows
hand, the final disruption occurs with such a high speed thdat in this regime a bubble becomes<2) mode unstable
the resulting micro bubbles will be ejected from the soundPefore =3) mode perturbations can be observed either as
field trap which makes a recombination impossible. Thusparametrical instability or for recycling bubbles. We con-
the onset of parametric instability defines the extinctionclude therefore that bubbles disrupting in strong pressure
threshold in a SBSL experiment, since a bubble beyond thifelds (P,=1.1 bar) where the distortion mode could not be
threshold will not survive more than a few cycles. resolved in experiments by Holt and Gaitan are most likely
In Fig. 6 the numerical solution for the onset of the ( (n=2) mode unstable.
=2) and i=3) mode parametric instability and the thresh- The comparison shows that the agreement of the numeri-
old above which the bubble may get disrupted by the ( cally determined parametric instability threshpld with experi-
=2) mode during a single sound cycle is compared to exmer)tal (_jata IS good and clearly marks an improvement to
perimental threshold data from Holt and Gaitan. We compar&arlier simulationg5-7,14.
the numerical solution not only to data where the mode of
the deformation was identifigdO indicates where bubbles
deform in a 6=2) mode manner and\ indicates (= 3)
mode deformations but also to recorded unstable bubbles The stability of the surface of a micron-sized argon
where the mode could not be classified)( Since we expect bubble in water was analyzed with focus on the sonolumi-

VI. CONCLUSION
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nescence parameter region. We show that molecular fluctua- w
tions in the bubble wall neighborhood cause small ripples j de[P}(6)]%sin6=
within the bubble’s surface. The equation describing the dy- 0
namics of the perturbation amplitude as derived by Prosper-
etti [11] was simplified by means of a boundary-layer ap-and
proximation[5,6,1§ including density variations inside the
bubble which have been neglected in previous studies. The
equation is additionally modified to allow for heat flow and ” dP™(6)\2 [mP™())?2
thermal noise and rewritten in the form of a stochastic dif- f [( . ) ( s )
ferential equation. dg

Solving the stochastic differential equation together with 2n(n+1) (n+m)!
the Keller-Miksis equation and an equation describing the =
temperature dynamics inside the bubble by means of Lan-
gevin’s formula enabled us to investigate the surface stability
of a cavitating bubble under SBSL conditions. Two different

. , o A can be expressed as

mechanisms responsible for the amplification of small per-
turbations during one cycle are discussed: while Rayleigh-
Taylor instability is responsible for the deformation of small (N2+n+2) (n+m)!
bubbles with equilibrium radii smaller than g&m in strong A=477R(2)+ me? |
sound fields, the Faraday instability causes waves in the sur- (2n+1) (n—m)!
face of larger bubbles. In a boundary-layer approach the lat-
ter instability mechanism may lead to the bubble’s disruption
within one cycle[Fig. 5(b)].

The extinction threshold observed in SBSL experiment
by Holt and Gaitarj4,33] and Gaitan and Holt34] is found
to correspond with the onset of parametric instability where K
amplified deformations built up over more than one cycle 7=05A, (A7)
(Fig. 6). While including density variations to the stability
problem increases the general stability during one cycle of a

bubble after the collapse, the onset of parametric instabilit;(/,Jl root-mean square amplitude for each spherical har-
remains unchanged. a P p

monic can be obtained in accordance with the equipartition
theorem[18]. The result is

(n+m)!
2n+1 (n—m)!

(A4)

sing

0 siné

2n+1 (n—m)!’ (A5)

+0(€%). (A6)

The surface energy associated with an increase in&kea
sis simply o 6A, whereo is the surface tension. By setting
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APPENDIX: SURFACE PERTURBATION
AT EQUILIBRIUM The functionsY['( 0, ¢) = P'(#)cosfneg) are not normal-
, o ized. To find a measure of the amplitude of deviations from
Suppose the bubble’s radius is spherical symmetry, the normalization intedrhl] was used

to define the amplitudé as the root-mean-square deviation,

— m H
1(0,4)=Rot ePy(f)sin(me), (AD) average over the bubble’s surface

whereP['(6) is an associated Legendre polynomial, &
is the radius of the bubble in spherical equilibrium. Since the

L 27
area of the surface is given by 1/12=J def de sin(r—Ro)2. (A9)
0 0
g 2T or 2 1 or 211/2
Azf do dersing r2+(a—0 +_—+(a—0) ,
° ° i’ For a spherical harmonic deviation with sizf' as in Eq.

(A2) (A8), one simply has

one can easily calculate the area to second order in

kT 1/2
) (A10)

o(n?+n+2)

2[PT(6)] ‘ﬂ:(

a=amier ™S [Taosi
=47R5+ 5 désing
0

2

3
+0(e%).  (A3) Formula(A10) gives the approximate size of deviations from

spherical symmetry for a bubble in equilibrium at constant
Using the standard integra]85] temperature.

(mwwy(mww
deo siné
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