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Thermal noise and the stability of single sonoluminescing bubbles

Ursula H. Augsdo¨rfer,* Allan K. Evans,† and David P. Oxley
Faculty of Computing Science and Engineering, Department of Mathematical Sciences, Institute of Simulation Sciences,

De Montfort University, Leicester LE1 9BH, England
~Received 3 November 1999; revised manuscript received 12 January 2000!

The stability of a bubble levitated in an acoustic field under single bubble sonoluminescence conditions was
numerically investigated taking thermal noise effects into consideration. Due to the microscopic size of a
sonoluminescing bubble thermal noise is important to its surface and is found to cause small irregularities in its
spherical shape. A stochastic differential equation in Langevin form is derived to describe the dynamics of a
perturbation from the spherical and solved together with the Rayleigh-Plesset equation. The mechanisms
responsible for the amplification of small irregularities are examined and a stability threshold is derived, which
is in good agreement with experimental threshold data of Holt and Gaitan.

PACS number~s!: 78.60.Mq, 47.20.Ma
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I. INTRODUCTION

The emission of light by gas bubbles in a liquid excit
by ultrasound was first reported in 1933 by Marinesco a
Trillat @1#. The phenomenon known as sonoluminesce
~SL!, was thought to be associated with the transient colla
of cavitating bubbles. In 1989 Gaitanet al. @2# discovered
the conditions under which a single bubble~SB! can be sta-
bly levitated in a standing sound wave and emit light
every cycle of the sound field.

In SBSL the bubble undergoes strong nonlinear osci
tions with every cycle of the sound field. The slow expans
and stretching of the bubble surface during the rarefac
phase is followed by a high velocity and almost adiaba
collapse of the bubble to a minimum radius which is det
mined by the high pressure of the bubble’s contents. At
point the contraction reverses and the bubble wall acceler
outward. After the collapse the bubble oscillates around
ambient radius with diminishing amplitude until the next ra
efaction phase of the driving sound. For a fixed equilibriu
radiusR0 the bubble will during these oscillations, if they a
small, exhibit its fundamental resonance frequencyv0 but
large oscillations will have a slightly different frequency b
cause of the nonlinearity of the bubble dynamics.

Observations of unstable bubbles show that they re
their spherical symmetry during the expansion phase,
become unstable after the collapse@3#. Experiments by Holt
and Gaitan@4# showed that the stable SBSL regime is d
fined by the radius of the bubble at ambient pressureR0 and
the amplitudePa of the driving acoustic pressurePd(t)
5Pa cosvst, wherevs/2p is the frequency of the driving
sound. As the amplitudePa of the driving pressure is in
creased distortions in the bubble’s surface lead to its dis
tion @4#.

A theoretical analysis of the bubble’s stability will enab
us to make a statement about regions in thePa-R0 parameter
plane at which stable SBSL experiments will be possib
Recent studies on the stability problem are either based
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simplifications which have important influence on the res
@5,6# or map out a stability threshold for driving pressur
which lie well below those applied in SBSL experimen
@7,8#. The subject of this paper is to improve the stabil
analysis by adding corrections to existing models and fo
on the stability behavior of bubbles within thePa-R0 param-
eter region.

Distortions from the spherical may be described by sup
imposing surface spherical harmonicsYn

m on the mean radius
R(t) such that

Rdistorted~ t !5R~ t !1 (
n52

`

(
m52n

n

an
m~ t !Yn

m~u,w!, ~1.1!

wherean
m is the distortion amplitude. The superscriptm de-

notes the degree of the spherical harmonics, while its s
script n indicates its mode. Since spherical harmonics
defined by means of Legendre polynomialsYn

m(u,w)
5Pn

m(u)cos(mw), it is clear that the wavelength of the shap
deformation decreases with increasing mode. For the s
amplitude an

m , a short wavelength deformation causes
greater increase in the bubble’s surface area than a
wavelength deformation. Because surface tension inhibits
creases in surface area high-n, short wavelength deforma
tions tend to develop smaller amplitudes than small-n defor-
mations.

The magnitude of each moden of the shape distortion
depends on the dynamics of its amplitudean

m . A small am-
plitude approximation, where it is assumed thatuan

m/Ru!1
allows us to describe the dynamics of the distortion am
tude by a linearized differential equation. In this linear a
proximation thean

m’s are uncoupled and their dynamics ca
be approximated by an equation which is independent of
degreem of the spherical harmonic@9–11#. After simplifica-
tions~see next section for details! the equation describing th
dynamics of the distortion has the form of a damped lin
harmonic oscillator

än~ t !1B~ t !ȧn~ t !1A~ t !an~ t !50. ~1.2!
5278 ©2000 The American Physical Society
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The majority of previous numerical studies@12,13# on the
stability problem are based on analyzing whether initial
terface distortions of small amplitude grow or diminish wi
time, where it is assumed that the spherical surface of
bubble is displaced from equilibrium and released at timt
50. However, during a sound cycle the stability of a bub
surface is not only affected by its nonlinear motion whi
may amplify initial perturbations from the spherical, but al
exposed to the continual motion of molecules in the s
rounding gas and liquid. Molecular fluctuations are more i
portant for bubbles on the microscopic scale typical
SBSL bubbles.

The present stability investigation was stimulated by
work of Brenneret al. @5# and Hilgenfeldtet al. @6# who first
considered the effects of thermal fluctuation in their analy
but adds a significant correction to the physical model. M
lecular fluctuations within the bubble and the surround
liquid act as a random force on the bubble surface. The
fore, this investigation will improve upon earlier models b
introducing a random force to the dynamics of the distort
amplitude rather than a random displacement. Prospe
and Hao@7# extended the stability model by introducing
nonzero right-hand side in the stability equation~1.2!, but
did not give a definite expression. The present analysis c
fies the remaining problem of the expression on the nonz
right-hand side of Eq.~1.2!. Using the equipartition theorem
and the theory of Langevin equations, we derive the cor
form of this expression and examine its consequences f
bubble in the SL parameter region. In this paper we also t
the flow of heat into and out of the bubble, improving on t
adiabatic or isothermal approximations used by other auth
@5,6,14#.

II. DYNAMICS OF THE DISTORTION AMPLITUDE

The equation of motion for distortions of amplitude,an ,
for a stationary bubble in a viscous fluid was first derived
Prosperetti@11#. Due to the problem of distribution of vor
ticity which is determined by the prior motion of the fre
surface, this equation has integrodifferential structure and
numerical solution is a difficult task. Several ways of simp
fication have since been applied: the complexity of Prosp
etti’s equation can be significantly reduced if it is assum
that vorticity has no time to spread into the liquid so that
effects can be ignored. This is the most common approxi
tion to the stability problem and frequently applied when t
surface stability of a gas bubble in liquid is discuss
@3,11,15#.

In order to simplify the problem with a higher degree
accuracy Prosperetti@16#, Hilgenfeldtet al. @6#, and Brenner
et al. @5# applied a boundary-layer approximation to t
problem, where it is assumed that vorticity spreads only i
a small boundary layer around the bubble. Hilgenfeldtet al.
@6# and Brenneret al. @5# in their approach additionally
modified the original derived equation of the boundary-la
approximation by means of a Taylor expansion, which le
to a damping term very much smaller than in the origin
approximation.

All authors @3,5–7,11,15,16# treat the problem assumin
that the viscosity and density of the gas are negligible. Ho
ever, density effects may become important at the end
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violent collapse, where the compressed gas has a de
comparable to that of the surrounding liquid. In this analy
we therefore consider the dynamics of the gas inside
bubble, but, to keep the problem tractable, ignore its visc
ity as in previous simulations.

If, as in Refs.@16,6#, it is assumed that vorticity spread
out only into a small liquid boundary layer of sized around
the bubble and one neglects only the viscosity of the gas,
equation of motion as derived by Prosperetti@11# can be
simplified to Eq. ~1.2!, where expressionsA(t) and B(t)
have the form

B~ t !5
3Ṙ

R
12

h l

zR2 S 2b1
n2~n12!2

112d/R D , ~2.1!

A~ t !5@~n11!~n12!rg2n~n21!r l #
R̈

zR
1

bs

zR3

1
2h l

z

Ṙ

R3 S b2
n2~n21!~n12!

112d/R D , ~2.2!

where b5n(n21)(n11)(n12) and z5nr l1rg(n11).
R,Ṙ,R̈ denote the radius, velocity, and acceleration of
bubble wall,r l , s, andh l refer to the density, surface ten
sion, and viscosity of the surrounding liquid, andrg is the
density of the gas inside the bubble.

Prosperetti and Hao@16#, Brenneret al. @5#, and Hilgen-
feldt et al. @6# approximate the boundary layer thicknessd by
the diffusive length scaleAn lt, wheren l5h l /r l is the kine-
matic viscosity of the liquid. As a time scale they chooset
51/vs , where vs /(2p) is the frequency of the driving
sound field. To prevent the boundary layer around a sm
bubble from growing larger than the radius of the bubb
itself we determine the width of the boundary layer by t
cutoff criteria introduced by Brenneret al. @5# and Hilgen-
feldt et al. @6# according to which

d5minSAn l

vs
,
R~ t !

2n D . ~2.3!

III. ADDING A THERMAL NOISE TERM

Molecular fluctuations in the surroundings of the bubb
wall act as a random force on the bubble surface. To mo
the effect of this random force on the dynamics of the d
tortion, the ordinary differential equation~1.2! which deter-
mines its dynamics has to be rewritten in the form of a s
chastic differential equation

än~ t !1B~ t !ȧn~ t !1A~ t !an~ t !5C~ t ! f ~ t !, ~3.1!

wheref (t) denotes the temporally uncorrelated random fo
simulated as white Gaussian noise with unit variance.
first consider the case whereA(t)5A, B(t)5B, and C(t)
5C are constants independent oft. Using standard method
@17# it can be shown that the root mean square amplitudean
of the deformation is given by

A^an
2&5

A2AB

C
. ~3.2!
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The equipartition theorem@18# also implies~see the Appen-
dix! that at equilibrium

A^an
2&5S kT0

s~n21n12!
D 1/2

, ~3.3!

with k representing the Boltzmann constant andT0 the equi-
librium temperature. We therefore set

C5S 2kT0AB

s~n21n12!
D 1/2

~3.4!

effectively choosing the amplitude of the fluctuations to s
isfy the equipartition theorem. We now make the assump
that the timescale for molecular fluctuations is much sho
than that of the bubble motion. This is clearly true, becaus
bubble with surface area 1029 m2 experiences on the orde
of 1021 molecular collisions per second from a gas at atm
spheric pressure. Thus, we can assume Eq.~3.4! will give the
correct amplitude for thermal noise even when A and B
pend on time. This formula is therefore used in our nume
cal simulations.

According to a recent analysis of thermal conduction
fects in SL@19# the temperature at the bubble wall is most
the cycle close to the ambient liquid temperature, due to
formation of a cold, dense layer of air at the bubble w
during its contraction. As the bubble hits its minimum radi
the temperature is predicted to change for only a few na
seconds. According to the fluctuation dissipation theor
@20# the time required for thermal noise to affect the dyna
ics of a system corresponds to the damping time of the
tem. The damping time for bubble shape oscillations is of
order of microseconds. It is thus reasonable to apply
equilibrium formula to SL bubbles. In water at room tem
perature and in equilibrium the amplitude of surface def
mations caused by thermal noise will have an amplitude
about 80 pm for smalln.

From Eq.~3.3! it is evident that the size of the deforma
tion due to noise effects decreases with increasing moden of
the deformation. In addition, keeping the expression
spherical harmonics in terms of Legendre polynomials
mind, the forcing required to excite modes increases with
mode number. We will discuss therefore in the followin
only the low distortion-mode components.

IV. RADIAL MOTION

To describe the bubble’s motion in the sound field
refer to the Keller-Miksis model accounting to first order f
the liquid compressibility@21#, given by

S 12
Ṙ

cl
D R̈R1

3

2
S 12

Ṙ

3cl
D Ṙ2

5S 1

r l
1

Ṙ

r lcl
D ~Pb2P`!1

R

r lcl

d

dt
~Pb2P`!,

~4.1!

wherePb is the pressure on the liquid side of the bubble w
given by
-
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Pb5Pg2
2s

R
2

4h l

R
Ṙ. ~4.2!

R,Ṙ,R̈ denote the bubble radius, the velocity of the bubb
wall, and its acceleration,r l ,h l , and s refer to density,
viscosity, and surface tension of the surrounding liquid,
spectively andcl denotes the speed of sound in the liquid. T
describe the pressure of the gasPg inside the bubble we
apply the van der Waals equation of state. Neglecting att
tive forces between the molecules has no effect on the p
ics discussed here, and we can use the van der Waals e
tion in the simplified form

Pg~ t !5
NR Tg~ t !

V~ t !2b
, ~4.3!

whereN is the number of moles present in the bubble,R is
the universal gas constant,Tg is the bubble’s internal tem
perature,V is the volume of the bubble, andb is the excluded
van der Waals hard core volume.

An equation to determine the temperature dynamics of
gas inside the bubble was derived from the first law of th
modynamics,

dU~ t !

dt
5

dQ~ t !

dt
2P

dV~ t !

dt
, ~4.4!

wheredU denotes the change in internal energy of the s
tem, dQ is the heat added to the system andP dV is the
work done on the system.

For a perfect gas the internal energy can be expresse
terms of the molar specific heat of the gas at constant
ume,CV , and change in temperature,dT, so that

dU~ t !

dt
5NCV

dT~ t !

dt
. ~4.5!

In the case of a gas bubble the heat absorbed by the g
given by

dQ~ t !

dt
5NCV

T02Tg~ t !

t
, ~4.6!

wheret is the thermal diffusion time andT0 is the tempera-
ture of the surrounding fluid.

Substituting Eqs.~4.5! and ~4.6! into Eq. ~4.4! we find
that the temperature of the gas inside the bubble varies
the bubble’s volumeV(t) as

dTg~ t !

dt
5

T02Tg~ t !

t
2

Pg~ t !

NCV

dV~ t !

dt
, ~4.7!

where Pg is the pressure inside the bubble. We sett
5R(t)2/(p2Dg), which is the relaxation time for exponen
tial decay of the first Fourier mode in the spherically sy
metric solution of the heat diffusion equation.Dg denotes the
thermal diffusivity of the gas, given by
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Dg5
kgV

NCP
, ~4.8!

with CP denoting the molar specific heat at constant pr
sure. The coefficient of thermal conductivitykg is given by
@22#

kg5
1

3
lgv̄gCV~N/V!5

2CV

3sgNA
S kTg

pmg
D 1/2

, ~4.9!

FIG. 1. ~a! Radius versus time over one cycle in a sound fi
with a pressure amplitude ofPa51.2 bar and a radial frequenc
vd52p320.6 kHz. The bubble has an equilibrium radius ofR0

54 mm. ~b! Corresponding temperature dynamics inside
bubble as a function of time. The maximum temperature occur
the bubble’s minimum radiusRmin534.8 ms and reaches abou
17 000 K. The maximum temperatures are not displayed to m
information at smaller temperatures visible in more detail.
-

where Tg is the bubbles internal temperature,NA denotes

Avogadro’s constant, andmg , lg , sg , andv̄g are the mass,
the mean free path, the collision cross section, and the m
speed of a gas molecule, respectively.

A solution to the Keller-Miksis equation of motion to
gether with the van der Waals equation of state coupled w
the above equation for the temperature dynamics inside
bubble is shown in Fig. 1. Figure 1~a! is a plot of a bubble’s
radial dynamics versus time for a bubble with an equilibriu
radiusR054 mm in a sound field with a pressure amplitud
Pa51.2 bar. Figure 1~b! is a plot of the corresponding tem
perature inside the bubble versus time. The maximum te
perature at the bubble’s minimum radius is about 17 000
Introducing the heat conduction to the model improves
agreement with experimental data when compared to an
thermal or adiabatic model. The importance of the ene
loss due to heat flow for the stability dynamics has alrea
been pointed out by Prosperetti and Hao@7# who found that
when including a thermal damping term the deformation
significantly weakened. A comparison between the therm
damping predicted by the approximation introduced here
the model of Chapman and Plesset@23# shows close agree
ment.

Recent experiments by Matula and Crum@24# and Ketter-
ling and Apfel@25# confirm a hypothesis by Lohseet al. @26#
according to which chemical reactions inside the bubble w
transform an air bubble to a pure argon bubble. Therefore
parameters are chosen to represent an argon bubble in w
and may be used to interpret air bubble experiments. C
stants used in the simulation are given in Table I.

Due to its stochastic character we need to apply a stoc
tic generalization of standard numerical methods to solve
~3.1!. Thus, we will solve Eq.~3.1! together with the Keller-
Miksis Eq. ~4.1! and Eq.~4.7! using the standard form o
Langevin’s formula@27#.

e
at

e

TABLE I. Constants used in the numerical simulation.

Sound

Frequency vs/2p 20.6 kHz
Speed in water cl 1481 m s21

water

Ambient pressure P0 1 bar
Ambient temperature T0 293.16 K
Viscosity h l 1023 kg m21 s21

Density r l 103 kg m23

Surface tension s 0.073 N m21

argon

Hard core v. d. Waals radius h R0/8.86 m
No. of moles per unit volume Ng 44.67 m23

Molar heat capacity, const. volume CV 12.5 J K21

Molar heat capacity, const. pressure CP 20.8 J K21

Mass per mole Mg 39.931023 kg
Mass per atom mg 6.68310226 kg
Collision cross section sg 36310220 m2

Viscosity hg 2131026 kg m21 s21
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FIG. 2. ~a!–~d! The bubble’s radius, velocity
acceleration, and gas density respectively,
plotted as a function of time during the fina
stages of collapse and the turnaround,R054 mm,
Pa51.4 bar.~e! and ~f! show the corresponding
dynamics of the dimensionless expressionsB(t)
and A(t) in Eq. ~3.1!. Both are shown in com-
parison with their dynamics~dotted line! in the
case where the density of the gas is neglect
While for the damping termB(t) ~e! the differ-
ence between the solutions is negligible, stro
compression may reverse the sign of the te
A(t) ~f!. An example of a typical (n52) mode
deformation~normalized! is plotted in~g!. If den-
sity is ignored the deformation after the collap
is considerably stronger~dotted line!. ~h! and ~i!

show the magnitudesB(t)ȧ2(t) and A(t)a2(t),
respectively.
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V. RESULTS AND DISCUSSION

The solution of Eq.~3.1! can be used to describe a num
ber of different instability characteristics, which act not on
on different time scales but also in differentPa-R0 parameter
regions. We will distinguish between two types of instabil
mechanisms responsible for the amplification of small p
turbations during one cycle.

The well-known Rayleigh-Taylor@28# instability acts as
the bubble wall is strongly accelerated outwards~from the
gas into the liquid!. The mechanism acts suddenly and on
nanosecond time scale. Although the Rayleigh-Taylor ins
bility amplifies small perturbations caused by molecular flu
tuation during one cycle, the mechanism is not stro
enough to lead to the bubble’s disruption in the parame
region relevant to SL.

The problem of an amplification of deformation caused
the bubble’s volume oscillations after the collapse goes b
to Faraday@29#. He discovered that a free surface of liqu
when oscillating periodically and normal to its surface w
induce waves~Faraday waves! on its surface of half the fre
quency of the oscillation. Longuet-Higgins@30# showed that
this also applies to spherical surfaces. For any surface m
n, strong Faraday instability will occur as 2vn /v0 ap-
proaches unity and resonance coupling between surface
volume oscillations occurs. In contrast to Prosperetti a
Hao @7#, who assigned the development of Faraday wa
only to the build-up of instabilities over more than one cyc
we find that maximal deformation due to the Faraday mec
nism will develop within microseconds and occurs more th
three bounces after the collapse.

Surface waves due to Faraday instability may be resp
sible for the increase in the signal reflected from the bub
surface a few radial oscillations after the collapse as
served in light-scattering experiments by Matula and Cr
@31#.

From the characteristics of the Faraday instability it
clear that the resonance frequencyv0 of the bubble is of
vital importance to the stability dynamics. If in the physic
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model the gas was assumed to behave isothermally its s
ness would be greatly underestimated leading to a comp
tively low resonance frequency@32#. As a consequence reso
nance coupling between radial and modal oscillatio
leading to a maximum amplification of surface waves, wou
occur at larger equilibrium radii. Also important are th
damping mechanics of the bubble motion since the bubb
resonance frequencyv0 will reduce with damping. Addition-
ally, as mentioned above, the amplification of surface wa
will be significantly stronger than in the undamped model
is therefore essential to determine the thermal dynamic
the system, a fact ignored in earlier studies@6,14#.

We now consider the effect of the gas densityrg on the
stability problem. During the collapse of a bubble, but befo
the final moments of very high compression, the first te
3Ṙ/R in Eq. ~2.1! is large and negative. The introduction o
rg reduces the size of the second term, but this effec
unimportant because the first term is dominant. A nega
value of B(t) leads to instability, and this instability is
almost unaffected by the gas density. This is illustrated
Fig. 2~e!.

While the damping is not significantly altered durin
strong collapse, including the gas density has important
fects on the coefficientA(t) in Eq. ~2.2!. When the bubble
radius is close to its minimum, the velocity of the bubb
wall is small and the acceleration of the gas towards
liquid is very large. In classical stability models, where g
density is neglected, strong Rayleigh-Taylor instability w
occur. This is represented in Eq.~3.1! by a large negative
value of the coefficientA(t). When gas density is include
this Rayleigh-Taylor effect is weakened, as can be seen f
Eq. ~2.2!. For very strong compression, as in the case
small bubbles in strong sound fields,A(t) may even become
positive and cause the amplitude of deformations to decre
~see Fig. 2!. This, however, is only true at the end of
violent collapse with strong compression. During the sub
quent afterbounces Rayleigh-Taylor instability will occ
and additionally increase perturbations amplified during
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violent collapse. We will therefore refer to the deformati
over the first 2–3 bounces after the collapse as Rayle
Taylor instability.

According to Prosperetti and Hao@7# the development of
surface deformations during the radial bounces after the
lapse is directly related to the Rayleigh-Taylor effect. Ho
ever, we find that the mechanisms can be separated and
different parameter regimes. The Rayleigh-Taylor instabi
is more pronounced for small bubbles which undergo
stronger collapse, while the Faraday instability on the ot
hand is responsible for the deformation of larger bubbles
may lead to their disruption during one cycle. In particu
the bubble shown in Fig. 4 has a maximal deformat
maxua2u516 nm over the first three bounces ast,44.5 ms,
while the smaller bubble in Fig. 3 in an equally strong sou
field develops a comparably larger deformation during
first three bounces, but no additional amplification occ
and the perturbation will be quickly damped out. Only t
larger bubble shown in Fig. 4 is Faraday unstable.

Figure 5 shows the mean maximum normalized pertur
tion developed during one cycle within thePa-R0 parameter
plane. The mean was derived from ten different solutio
each obtained using a different stringi of random numbers
so that ^maxua2 /Ru&5 1

10(k51
10 maxua2 /Ruik. In Fig. 5~a! the

maximum deformation due to Rayleigh-Taylor instabili
only is shown. While large bubbles are stable over the fi
2–3 bounces after the collapse throughout the range of d
ing pressures, small bubbles can become Rayleigh-Ta
unstable at higher driving pressures.

The Faraday instability is shown in Fig. 5~b!. After a
peak, which indicates the equilibrium radius at which re
nance coupling between the volume and surface oscillat
occurs, the maximum deformation due to Faraday waves
cease. This however, does not imply that the bubble
retain its spherical symmetry for higher radii. Higher mod
are excited at higher equilibrium bubble radii. Additionall

FIG. 3. ~a! Radius versus time during the final stages of collap
and the radial bounces following the collapse,R052 mm, Pa

51.4 bar. ~b! Typical corresponding (n52) mode deformation.
After a strong amplification att'38.7 ms due to a violent bubble
collapse, perturbations get additionally amplified due to Raylei
Taylor instability from secondary minima occurring with furth
bounces.
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coupling between surface modes is becoming importa
which is beyond the scope of this analysis.

Both, the Rayleigh-Taylor and Faraday instability ampli
small perturbation caused by molecular fluctuation but o
the latter is strong enough to amplify surface waves wh
lead to the bubble’s disruption in a single cycle. As an e
mate we assume the possible break up of a bubble if in
of ten cycles the size of the deformation reaches the siz
the radiusua2 /Ru51 as in previous simulations@5–7#.

If strong surface waves develop during the after boun
and restoring forces are weak, distortions may not be enti
stretched out during the next expansion phase. As a co
quence the deformation developed in the first cycle will e
perience a second and subsequent amplification in the
lowing cycles. A third instability mechanism, referred to
parametric instability is responsible for the build-up of sha
instabilities over more than one cycle. A bubble is assum
to be parametrically unstable if for every one of ten so
tions, each obtained with a different string of random nu
bers to simulate thermal noise, the instability grows fro
cycle to cycle. For each cycle we used the same string
random numbers.

As shown in Fig. 6 for larger bubbles at driving pressur
below SL amplitudes the parametric instability sets in bef
the bubble’s disruption during a single cycle. At near-S
acoustic pressures~about 1.2–1.5 bar!, a parametrically
stable bubble may get disrupted during one single cycle.
important difference between these two types of instabil
which both may lead to the bubble’s disruption, is the spe
with which the deformation and subsequent disruption
curs. While the deformation during one cycle with
the SL parameter range (1mm<R0<7 mm, 1.2 bar<Pa
<1.4 bar) never exceeds about 150 m/s, deformation wh
builds up over several cycles may reach enormous spe
(.106 m/s). One may expect a bubble which disrup
‘‘slowly’’ into a mass of microbubbles to reform at the an
tinode since the mass of bubbles is not scattered far apar

e

-

FIG. 4. ~a! The bubble radius as a function of time during co
lapse until the next sound cycle,R054 mm,Pa51.4 bar. Below~b!
the corresponding amplitude of (n52) mode deformation, which
reaches a maximum seven radial bounces after the bubble rea
its first minimum att'39.9 ms.
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a result they may merge at the driving pressure antinod
the sound field as they expand during the next rarefac
phase. This may explain the appearance of bubbles w
repeatedly grow, shape oscillate, and break up in the so
field. What is termed ‘‘recycling’’ bubbles was observed
Holt and Gaitan@4# at driving pressures between 0.8 and 1
bar. In the case of parametric unstable bubbles on the o
hand, the final disruption occurs with such a high speed
the resulting micro bubbles will be ejected from the sou
field trap which makes a recombination impossible. Th
the onset of parametric instability defines the extinct
threshold in a SBSL experiment, since a bubble beyond
threshold will not survive more than a few cycles.

In Fig. 6 the numerical solution for the onset of then
52) and (n53) mode parametric instability and the thres
old above which the bubble may get disrupted by then
52) mode during a single sound cycle is compared to
perimental threshold data from Holt and Gaitan. We comp
the numerical solution not only to data where the mode
the deformation was identified@s indicates where bubble
deform in a (n52) mode manner andn indicates (n53)
mode deformations#, but also to recorded unstable bubbl
where the mode could not be classified (3). Since we expect

FIG. 5. ~a! The mean maximum of the normalized (n52) de-
formation during the first three radial bounces after collapse, wh
Rayleigh-Taylor occurs. The mean is plotted as a function of d
ing pressure amplitudePa and the bubbles equilibrium radiusR0.
~b! The mean maximum amplitude of normalized surface wa
during the bubbles radial bounce, from the third radial bounce a
the collapse until the next expansion phase.
of
n

ch
nd

er
at
d
,

is

-
re
f

larger modes to become important only for bubbles lar
than in the SBSL regime, it is reasonable to compare th
data points to numerical instability thresholds for small mo
deformations.

The numerical results show that for bubbles with an eq
librium radiusR0 larger than about 10mm the (n53) mode
distortion will become parametrical unstablebefore the (n
52) mode parametric instability sets in. This is in clo
agreement with experiments where for bubbles withR0
.13 mm only the (n53) mode was observed, while th
(n52) mode perturbation dominates for smaller bubbles

The experimentally obtained (n52) mode instability
threshold indicates a trend for bubbles withR0.11 mm
which deviates from the numerical predicted onset ofn
52) mode parametric instability, but instead correspon
well with the onset (n53) mode parametric threshold. Th
discrepancy hints that coupling between the distortion mo
may occur and the onset of (n53) instability stimulates the
smaller perturbation mode.

For SBSL bubbles, which have smaller equilibrium rad
R0<7 mm, the (n52) mode distortion must dominate th
bubble’s surface oscillations. Our numerical solution sho
that in this regime a bubble becomes (n52) mode unstable
before (n53) mode perturbations can be observed either
parametrical instability or for recycling bubbles. We co
clude therefore that bubbles disrupting in strong press
fields (Pa>1.1 bar) where the distortion mode could not
resolved in experiments by Holt and Gaitan are most lik
(n52) mode unstable.

The comparison shows that the agreement of the num
cally determined parametric instability threshold with expe
mental data is good and clearly marks an improvemen
earlier simulations@5–7,14#.

VI. CONCLUSION

The stability of the surface of a micron-sized arg
bubble in water was analyzed with focus on the sonolu

re
-

s
er

FIG. 6. The numerical derived thresholds for which a bubble
found to be (n52) mode parametric instable~—!, (n53) mode
parametric unstable~– –!, and may disrupt by two-mode deforma
tion during a single cycle (•••) is plotted within the equilibrium
radius,R0, and the sound pressure amplitude,Pa , parameter plane
Stability threshold data from experiments by Holt and Gaitan
indicated by crosses for instable bubbles where the mode was
identified, by circles for 2-mode instable bubbles, and by triang
for 3-mode instable bubbles.
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nescence parameter region. We show that molecular fluc
tions in the bubble wall neighborhood cause small ripp
within the bubble’s surface. The equation describing the
namics of the perturbation amplitude as derived by Pros
etti @11# was simplified by means of a boundary-layer a
proximation @5,6,16# including density variations inside th
bubble which have been neglected in previous studies.
equation is additionally modified to allow for heat flow an
thermal noise and rewritten in the form of a stochastic d
ferential equation.

Solving the stochastic differential equation together w
the Keller-Miksis equation and an equation describing
temperature dynamics inside the bubble by means of L
gevin’s formula enabled us to investigate the surface stab
of a cavitating bubble under SBSL conditions. Two differe
mechanisms responsible for the amplification of small p
turbations during one cycle are discussed: while Raylei
Taylor instability is responsible for the deformation of sm
bubbles with equilibrium radii smaller than 3mm in strong
sound fields, the Faraday instability causes waves in the
face of larger bubbles. In a boundary-layer approach the
ter instability mechanism may lead to the bubble’s disrupt
within one cycle@Fig. 5~b!#.

The extinction threshold observed in SBSL experime
by Holt and Gaitan@4,33# and Gaitan and Holt@34# is found
to correspond with the onset of parametric instability wh
amplified deformations built up over more than one cy
~Fig. 6!. While including density variations to the stabilit
problem increases the general stability during one cycle
bubble after the collapse, the onset of parametric instab
remains unchanged.
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APPENDIX: SURFACE PERTURBATION
AT EQUILIBRIUM

Suppose the bubble’s radius is

r ~u,f!5R01ePn
m~u!sin~mw!, ~A1!

wherePn
m(u) is an associated Legendre polynomial, andR0

is the radius of the bubble in spherical equilibrium. Since
area of the surface is given by

A5E
0

p

duE
0

2p

dw r sinuF r 21S ]r

]u D 2

1
1

sin2u
1S ]r

]u D 2G 1/2

,

~A2!

one can easily calculate the area to second order ine:

A54pR0
21

pe2

2 E
0

p

du sinuF2@Pn
m~u!#2

1S mPn
m~u!

du D 2

1S mPn
m~u!

sinu D 2G1O~e3!. ~A3!

Using the standard integrals@35#
a-
s
-
r-
-

he

-

e
n-
ty
t
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l

r-
t-
n

s

e

a
ty

-
-

e

E
0

p

du@Pn
m~u!#2 sinu5

2

2n11

~n1m!!

~n2m!!
~A4!

and

E
0

p

duF S dPn
m~u!

du D 2

1S mPn
m~u!

sinu D 2Gsinu

5
2n~n11!

2n11

~n1m!!

~n2m!!
, ~A5!

A can be expressed as

A54pR0
21pe2

~n21n12!

~2n11!

~n1m!!

~n2m!!
1O~e3!. ~A6!

The surface energy associated with an increase in areadA
is simply sdA, wheres is the surface tension. By setting

kT

2
5sdA, ~A7!

a root-mean square amplitudeen
m for each spherical har

monic can be obtained in accordance with the equipartit
theorem@18#. The result is

~en
m!25

kT

2ps

~2n11!

~n21n12!

~n1m!!

~n1m!!
. ~A8!

The functionsYn
m(u,f)5Pn

m(u)cos(mf) are not normal-
ized. To find a measure of the amplitude of deviations fro
spherical symmetry, the normalization integral@11# was used
to define the amplitudec as the root-mean-square deviatio
average over the bubble’s surface

c25E
0

p

duE
0

2p

dw sinu~r 2R0!2. ~A9!

For a spherical harmonic deviation with sizeen
m as in Eq.

~A8!, one simply has

c5S kT

s~n21n12!
D 1/2

. ~A10!

Formula~A10! gives the approximate size of deviations fro
spherical symmetry for a bubble in equilibrium at consta
temperature.
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